Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 73(2): 459-68, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24639074

RESUMO

PURPOSE: Accurate metabolite and protein quantification in blood plasma and other body fluids from one single NMR measurement, allowing for improved quantitative metabolic profiling and better assessment of metabolite-protein interactions. THEORY AND METHODS: The total protein concentration is derived from the common chemical-shift changes-caused by protein-induced bulk magnetic susceptibility (BMS)-measured on well-accessible and exchange-free metabolite resonances. These BMS shifts are simply obtained by external referencing with respect to 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt in a coaxial insert. RESULTS: Based on blood-plasma data from five volunteers, the estimated accuracy of the BMS method is ≤ 5% with respect and comparable to the 3.8% error of the standard colorimetric, Biuret, method. Valine, alanine, glucose, leucine, and lactate display no exchange-induced shift changes. Their well-accessible signals act as reliable probes for pure protein-induced BMS. The slopes and intercepts of their chemical-shift change versus protein concentration were derived from metabolite mixtures with (fatted) human and bovine albumin acting as blood-plasma mimics. CONCLUSION: The BMS method, demonstrated on blood plasma, can also be used on other samples containing sufficient protein (> 10 g/L). Also, it allows measurement of the presence and sign of exchange-induced chemical-shift changes.


Assuntos
Algoritmos , Análise Química do Sangue/métodos , Proteínas Sanguíneas/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Proteoma/metabolismo , Humanos , Metaboloma/fisiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
J Magn Reson ; 228: 81-94, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23357430

RESUMO

Metabolites and their concentrations are direct reporters on body biochemistry. Thanks to technical developments metabolic profiling of body fluids, such as blood plasma, by for instance NMR has in the past decade become increasingly accurate enabling successful clinical diagnostics. Human Serum Albumin (HSA) is the main plasma protein (∼60% of all plasma protein) and responsible for the transport of endogenous (e.g. fatty acids) and exogenous metabolites, which it achieves thanks to its multiple binding sites and its flexibility. HSA has been extensively studied with regard to its binding of drugs (exogenous metabolites), but only to a lesser extent with regard to its binding of endogenous (non-fatty acid) metabolites. To obtain correct NMR measured metabolic profiles of blood plasma and/or potentially extract information on HSA and fatty acids content, it is necessary to characterize these endogenous metabolite/plasma protein interactions. Here, we investigate these metabolite-HSA interactions in blood plasma and blood plasma mimics. The latter contain the roughly twenty metabolites routinely detected by NMR (also most abundant) in normal relative concentrations with fatted or non-fatted HSA added or not. First, we find that chemical shift changes are small and seen only for a few of the metabolites. In contrast, a significant number of the metabolites display reduced resonance integrals and reduced free concentrations in the presence of HSA or fatted HSA. For slow-exchange (or strong) interactions, NMR resonance integrals report the free metabolite concentration, while for fast exchange (weak binding) the chemical shift reports on the binding. Hence, these metabolites bind strongly to HSA and/or fatted HSA, but to a limited degree because for most metabolites their concentration is smaller than the HSA concentration. Most interestingly, fatty acids decrease the metabolite-HSA binding quite significantly for most of the interacting metabolites. We further find that competition between the metabolites for binding is absent for most of these metabolites. These mappings in plasma mimics may thus open new opportunities for improved metabolic profiling of blood plasma. For instance, correct metabolite concentrations can be determined for the non-interacting metabolites and/or concentration corrections made for interacting metabolites. Secondly, the interacting metabolites could be used to act as reporters on HSA and fatty acid concentration in plasma, and thus potentially act as biomarker in diagnostic studies of trauma or cardiovascular diseases. Finally, we find in the blood plasma mimics that after ultrafiltration, commonly used to remove the protein from plasma, the measured concentration equals the total metabolite concentration, except for the strongest binding metabolite citrate.


Assuntos
Proteínas Sanguíneas/metabolismo , Ácidos Graxos/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Plasma/metabolismo , Albumina Sérica/metabolismo , Humanos , Ligação Proteica
3.
Anal Bioanal Chem ; 403(4): 947-59, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22395451

RESUMO

Because cerebrospinal fluid (CSF) is the biofluid which interacts most closely with the central nervous system, it holds promise as a reporter of neurological disease, for example multiple sclerosis (MScl). To characterize the metabolomics profile of neuroinflammatory aspects of this disease we studied an animal model of MScl-experimental autoimmune/allergic encephalomyelitis (EAE). Because CSF also exchanges metabolites with blood via the blood-brain barrier, malfunctions occurring in the CNS may be reflected in the biochemical composition of blood plasma. The combination of blood plasma and CSF provides more complete information about the disease. Both biofluids can be studied by use of NMR spectroscopy. It is then necessary to perform combined analysis of the two different datasets. Mid-level data fusion was therefore applied to blood plasma and CSF datasets. First, relevant information was extracted from each biofluid dataset by use of linear support vector machine recursive feature elimination. The selected variables from each dataset were concatenated for joint analysis by partial least squares discriminant analysis (PLS-DA). The combined metabolomics information from plasma and CSF enables more efficient and reliable discrimination of the onset of EAE. Second, we introduced hierarchical models fusion, in which previously developed PLS-DA models are hierarchically combined. We show that this approach enables neuroinflamed rats (even on the day of onset) to be distinguished from either healthy or peripherally inflamed rats. Moreover, progression of EAE can be investigated because the model separates the onset and peak of the disease.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Esclerose Múltipla/sangue , Esclerose Múltipla/líquido cefalorraquidiano , Animais , Encefalomielite Autoimune Experimental/sangue , Encefalomielite Autoimune Experimental/líquido cefalorraquidiano , Humanos , Masculino , Metabolômica , Modelos Biológicos , Esclerose Múltipla/diagnóstico , Ratos , Ratos Endogâmicos Lew
4.
Nucleic Acids Res ; 37(17): e114, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19553193

RESUMO

We demonstrate a new, efficient and easy-to-use method for enzymatic synthesis of (stereo-)specific and segmental (13)C/(15)N/(2)H isotope-labeled single-stranded DNA in amounts sufficient for NMR, based on the highly efficient self-primed PCR. To achieve this, new approaches are introduced and combined. (i) Asymmetric endonuclease double digestion of tandem-repeated PCR product. (ii) T4 DNA ligase mediated ligation of two ssDNA segments. (iii) In vitro dNTP synthesis, consisting of in vitro rNTP synthesis followed by enzymatic stereo-selective reduction of the C2' of the rNTP, and a one-pot add-up synthesis of dTTP from dUTP. The method is demonstrated on two ssDNAs: (i) a 36-nt three-way junction, selectively (13)C(9)/(15)N(3)/(2)H((1',2'',3',4',5',5''))-dC labeled and (ii) a 39-nt triple-repeat three-way junction, selectively (13)C(9)/(15)N(3)/(2)H((1',2'',3',4',5',5''))-dC and (13)C(9)/(15)N(2)/(2)H((1',2'',3',4',5',5''))-dT labeled in segment C20-C39. Their NMR spectra show the spectral simplification, while the stereo-selective (2)H-labeling in the deoxyribose of the dC-residues, straightforwardly provided assignment of their C1'-H2' and C2'-H2' resonances. The labeling protocols can be extended to larger ssDNA molecules and to more than two segments.


Assuntos
DNA de Cadeia Simples/biossíntese , DNA de Cadeia Simples/química , Ressonância Magnética Nuclear Biomolecular , Reação em Cadeia da Polimerase/métodos , DNA Ligases , Primers do DNA/química , Enzimas de Restrição do DNA , Desoxirribonucleotídeos/biossíntese , Marcação por Isótopo
5.
Nucleic Acids Res ; 36(14): e89, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18583361

RESUMO

Multiple segmental and selective isotope labeling of RNA with three segments has been demonstrated by introducing an RNA segment, selectively labeled with (13)C(9)/(15)N(2)/(2)H((1', 3', 4', 5', 5''))-labeled uridine residues, into the central position of the 20 kDa epsilon-RNA of Duck Hepatitis B Virus. The RNA molecules were produced via two efficient protocols: a two-step protocol, which uses T4 DNA ligase and T4 RNA ligase 1, and a one-pot protocol, which uses T4 RNA ligase 1 alone. With T4 RNA ligase 1 all not-to-be-ligated termini are usually protected to prevent formation of side products. We show that such labor-intensive protection of termini is not required, provided segmentation sites can be chosen such that the segments fold into the target structure or target-like structures and thus are not trapped into stable alternate structures. These sites can be reliably predicted via DINAMelt. The simplified NMR spectrum provided evidence for the presence of a U28 H(3)-imino resonance, previously obscured in the fully labeled sample, and thus of the non-canonical base pair U28:C37. The demonstrated multiple segmental labeling protocols are generally applicable to large RNA molecules and can be extended to more than three segments.


Assuntos
Marcação por Isótopo/métodos , Ressonância Magnética Nuclear Biomolecular , RNA/química , Sequência de Bases , Isótopos de Carbono , DNA Ligases , Deutério , Eletroforese em Gel de Poliacrilamida , Vírus da Hepatite B do Pato/genética , Dados de Sequência Molecular , Isótopos de Nitrogênio , RNA Ligase (ATP) , RNA Viral/biossíntese , RNA Viral/química , Proteínas Virais
6.
Nucleic Acids Res ; 35(8): 2800-11, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17430968

RESUMO

Hepatitis B virus (HBV) replication is initiated by binding of its reverse transcriptase (P) to the apical stem-loop (AL) and primer loop (PL) of epsilon, a highly conserved RNA element at the 5'-end of the RNA pregenome. Mutation studies on duck/heron and human in vitro systems have shown similarities but also differences between their P-epsilon interaction. Here, NMR and UV thermodynamic data on AL (and PL) from these three species are presented. The stabilities of the duck and heron ALs were found to be similar, and much lower than that of human. NMR data show that this low stability stems from an 11-nt internal bulge destabilizing the stem of heron AL. In duck, although structured at low temperature, this region also forms a weak point as its imino resonances broaden to disappearance between 30 and 35 degrees C well below the overall AL melting temperature. Surprisingly, the duck- and heron ALs were both found to be capped by a stable well-structured UGUU tetraloop. All avian ALs are expected to adhere to this because of their conserved sequence. Duck PL is stable and structured and, in view of sequence similarities, the same is expected for heron - and human PL.


Assuntos
Avihepadnavirus/genética , Vírus da Hepatite B do Pato/genética , Vírus da Hepatite B/genética , RNA Viral/química , Termodinâmica , Sequência de Bases , Capsídeo/química , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...